
A Particle Swarm Selects for Evolution of Gliders
in Non-Uniform 2D Cellular Automata

JJ Ventrella

Jeffrey@Ventrella.com

Simulation online at: http://www.ventrella.com/Alife/Cells/GlidersAndRiders/Cells.html

Abstract
Coherent space-time structures (gliders) which emerge in
class IV cellular automata (CA) can be seen as “vehicles”
that move information, as they are common in CA which
support universal computation. A technique for evolving
gliders from heterogeneous 2D CA is described. Rather than
use a genetic algorithm on a population of rules, and image-
filtering to detect structures for measuring fitness, a particle
swarm is employed which interacts intimately with the CA
and performs genetic operators locally on the heterogeneous
rules, as the dynamics emerge. The swarm selects for
coherent motion. These particles do not fly on a search
mission – instead, they “ride” on the backs of clusters of
emerging structures, due to attractive forces. In exchange
for a “good ride”, they reward local dynamics with more
coherent motion by performing genetic operators of
selection and reproduction. This technique not only
demonstrates an efficient way to evolve a large variety of
gliders: it also simulates emergent complexity through co-
adaptation.

Introduction
Cellular automata (CA) are discrete dynamical systems
used to explore general principles in terms of how
complexity arises from simple rules. Much research using
CA is centered on universal computation – the ability for
CA to generate dynamics representing basic logical
operators that are the foundation of computation, as in a
Turing Machine. Research in evolving CA rules that
exhibit universality have implications for theories on the
origins of life. As put by Chris Langton: “In living
systems, a dynamics of information has gained control
over the dynamics of energy, which determines the
behavior of most non-living systems. How has this
domestication of the brawn of energy to the will of
information come to pass?” (Langton, 1992).
 CA that support universality are of class IV dynamics
(Wolfram, 1984). This is the class of dynamics supporting
coherent space-time structures, known as gliders. Gliders,
as well as various kinds of waves and multi-glider
configurations, are structures that propagate across the CA
space against a quiescent or periodic background. They can
be described as “vehicles” which move signals across the
CA space. It has been shown that the interactions of
multiple gliders in controlled arrangements in the Life
Universe, can represent the basic logical operators of
computation. (Smith 1971), (Berlekamp, et al. 1982),

(Rendell 2000), and others, have developed CA’s capable
of universal computation.

Variations of the Genetic Algorithm (GA) have been
used to evolve CA rules which support dynamics
exhibiting universality. (Das et al. 1994) developed GA’s
to evolve populations of CA rules. The resulting dynamics
of their research are able to perform computational tasks.
(Wuensche, 2001) has developed ways to automatically
detect space-time patterns in CA, and has classified many
kinds of dynamics.

This paper proposes a technique which is symbiotic, and
emergent: a collective of particles interact with a 2D CA
lattice with heterogeneous rules (transition functions).
These particles detect coherent motion within the CA
dynamics, communicate with each other about it, and – by
performing genetic operators asynchronously over time –
actually promote the evolution of gliders (defined in this
paper as structures that propagate in a coherent direction
and speed against a quiescent background – and have long
life spans.)

The paper is organized as follows: First is an
explanation of why a swarm-based technique was chosen
over a visual/analytical approach. Then, comparisons to the
standard particle swarm optimization technique are given.
The CA model is then described, followed by a description
of how the particles apply the genetic operators on the CA.
An explanation of the parameters is given, and finally,
observations from experiments are given.

Visual Observer vs. Interactive Agent
The eye/brain system can easily detect many kinds of
motion, and so we are able to recognize various moving
patterns in CA. This may be one reason why Conway’s
Game of Life (Gardner, 1970) is so mesmerizing to watch.
(In this paper, Conway’s Game of Life is simply called,
“Conway”).

In a previous exploration in evolving gliders, an
interactive evolution interface was developed and
published online (Ventrella, 2000). With repeated viewings
of the dynamics of individuals from a population of
transition functions, the user judges according to
aesthetics. The user’s choices act as the fitness function for
a genetic algorithm. The question of how to automatically
select for gliders was considered, and this lead to the
current project. An earlier version of the technique
presented here used a convolution filter to identify fuzzy
objects which persist over time. This proved to be CPU-

intensive, especially when applied over simulated time. But
more importantly, the conclusion was made that it is not
germane to the subject of interest: emergent complexity –
how an information-dynamic may have emerged from
within inanimate matter. Using a visual model seemed
inappropriate.

The work of (Ramos and Almeida, 2000) in modeling
artificial ant colonies to detect features in digital images,
using pheromone modeling, provided motivation for taking
a swarm approach. Such techniques use collaborative
filtering, and demonstrate stigmergy, a principle introduced
by (Grassé, 1959) to explain some of his observations of
termite nest-building behaviors. Stigmergy recognizes the
environment as a stimulus factor in the behavior of an
organic collective, which in turn affects that environment.
 Particle systems traditionally used in computer graphics
(Reeves, 1983) provided further inspiration for some of the
techniques used involving physical simulation.

Particle Swarm Guides Evolution
Particle Swarm Optimization (PSO) (Kennedy and
Eberhart, 1995) is a searching and optimizing technique
that is effective across many problem domains. It is
modeled after a kind of collective adaptive behavior,
demonstrated by the social systems of humans, insects, and
other living systems comprised of many interacting parts.
This paper introduces a technique which has similarities
with PSO, but departs in a few significant ways. A
collection of particles is superimposed upon the CA lattice,

as illustrated in Figure 1. At every
time step, a particle occupies the area
corresponding to a unique cell in the
CA lattice (imagine a marble rolling
across a square-tiled floor). Particles
are attracted to "live" cells, and can
detect them if they exist within a
local neighborhood.

Figure 1: The particle swarm maps to the CA space

These live cells generate an attraction force which is
applied to the particle’s velocity. The quality of the
particle's velocity is then subject to interpretation by the
particle itself, based on a selection criterion S. When a
superior quality is found, the particle stores the genes from
the associated local area in the CA. (analogous to pBest
value in PSO). Copies of the selected genes are continually
deposited back into the CA over time. When two particles
come in contact with each other, the particle with the
highest value gives a copy of its genes to the other particle.
This local, social exchange reinforces the effect of
selection. There is no calculation of global best (analogous
to gBest in PSO). Soon after initialization, local regions of
relatively homogeneous genetics emerge. Some of these
are dense and highly chaotic, and effectively "trap"
particles. Other regions give birth to short-lived
propagating structures, or "proto-gliders". These proto-
gliders can transport the particles across greater distances,

which then spread further the genes they have selected. In
most simulation runs, a secondary phase takes over in
which new gliders expand the genetic regions from which
they originated. This phase usually results in a rapid take-
over by one transition function supporting gliders.

The CA
The 2D lattice of automata are arranged in a square grid.
Periodic boundary conditions enable the dynamics to wrap-
around. Time is measured in discrete steps. A cell can
assume any state in the range from 0 to the number of
possible states K. State 0 is the quiescent state. At each
time step the state of each cell can be changed to another
state according to that cell’s transition function.

As mentioned before, each cell has its own unique
transition function. The 9-cell Moore neighborhood is used
as a local environment to determine the next state of the
cell at each time step t. The transition function consists of
R “sub-rules” applied in sequence. A single sub-rule is
expressed as follows: the cell's current state is compared to
a reference state (the referenceState). If the cell's state does
not match referenceState, then the sub-rule is not applied,
and the cell defaults to quiescence. Otherwise, the sub-rule
compares the number of neighbors having a specific state
(the neighborState) to a specific number (the
neighborCount). If there is a match, then the sub-rule sets
the cell's new state to a specific result state (the
resultState). Thus, four parameters are used for each sub-
rule, which are genetic, i.e., they can have a range of
possible values, and can be changed by a genetic operator.
The possible ranges are as follows:

1. referenceState can be any state in K
2. neighborState can be any in K state except quiescent
3. neighborCount can be any number from 1 to M
4. resultState can be any state in K

K has been tested with values as high as 20. The number
of sub-rules R has been tested with values as high as 80,
and thus the number of genes per transition function 4R
can be as high as 320. The set of all genes for a transition
function is referred to as the gene array. The pseudocode
below illustrates how the sub-rules are applied to
determine the value of the new cell state.

To place this in a familiar context: the transition function
would require three separate sub-rules to define Conway,
and the gene values would be as follows:

sub cell neighbor neighbor result

-rule# -state -state -count -state

1 0, 1, 3, 1

2 1, 1, 2, 1

3 1, 1, 3, 1

The number of genes required for Conway is 12. Of
course the essence of Conway can be expressed with fewer
parameters, using more elegant notations, but the purpose
of this experiment is not elegance.
 Given a large number of sub-rules, and the initial set of
random values, it is often the case that some of these sub-
rules are redundant – having the exact same values.
Furthermore, it is likely that many of these sub-rules, as
they are applied in sequence, will "over-write" the results
of previously applied sub-rules. From a Computer Science
point of view, this would be considered sloppy
programming. However, this encoding of the CA transition
function allows for a larger, more flexible genetic space for
experimentation.

The Particles
The particle swarm consists of n (typically 500) particles.
Unlike the cells of the CA, the particles occupy a real
number space (normalized to a square of size 1), and can
thus move continuously. Similar to the CA, particles have
periodic boundary conditions, and so if a particle falls off
an edge of the domain, it re-appears at the opposite edge,
maintaining its velocity. Velocity and position are updated
every time step t as follows: For the ith particle...

vi(t) = vi(t-1)ω + ai + ri
pi(t) = pi(t-1) + vi(t)

i = {1, 2...n}, where n is the number of particles. p is
position, v is velocity, and ω is the inertia weight (0 ≤ ω ≤
1). Two forces: a and r, are added to the velocity at every
time step, as explained below.
 To keep the particles from going out of control as forces
a and r are added to v over time, v is scaled at each time
step by an inertia weight ω. (Shi and Eberhart, 1998)
introduced an inertia weight to the standard PSO
technique, which affects the nature of a particle’s “flying”
behavior. The particles in this scheme perform different
tasks than in PSO (they don’t actively fly, they passively
ride). In either case, the precise tuning of the ω is
important, as explained below.

The Particle Cell-Neighborhood
At every time step a particle maps to a unique cell in the
space of CA, called its “reference cell”. The particle
continually reads the contents within a local Moore

neighborhood of radius 2 (number of cells PN = 5X5 =
25), which surrounds and includes the reference cell, as
shown in Figure 2. (Note that this neighborhood is larger
than the neighborhood for the CA transition function). If
one or more of the cells in the neighborhood are non-
quiescent, the velocity of the particle is accelerated by an
attraction force a, which is the sum of all vectors from the
reference cell to each non-quiescent cell in the
neighborhood. This vector is normalized and scaled by the
attraction weight aw.

Figure 2: A particle cell-neighborhood containing 7 non-
quiescent cells. At left are the 7 resulting attraction vectors. At
right is the vector resulting from summing these vectors and
normalizing the sum

When a particle’s velocity v is being accelerated by
force a, the particle is said to be "riding", and the "quality"
of the ride q (0 ≤ q ≤ 1) is determined by the selection
criterion S, which is a function of velocity over time. In
most experiments, the criterion is configured so as to favor
a constant velocity and a maximum speed. This is
explained below. When the particle is not riding, a random
force vector, r, is added at each time step. It has
magnitude rw (random weight), and one of four possible
orthogonal directions, randomly chosen at each time step.
This force causes the particle to meander in a Brownian
fashion, and allows momentary dense clumps of particles
to dissipate. Higher values of rw cause faster dissipation.

The Genetic Operators
Every particle has a random chance of dying and being re-
born, at a rate of b (0 ≤ b ≤ 1) chance per time step. When
a particle is re-born, its position is reset to a new random
location and it takes a copy of the gene array from its new
reference cell. Particles perform four genetic operators,
illustrated in Figure 3, and explained below.

Figure 3: The four genetic operators: (a) selection, (b) exchange,
(c) mutation, and (d) reproduction

a. Selection
When a particle experiences "the best ride in its life" (the
best q found so far: bq), it stores this along with the genes
from its reference cell. If at any time a better q is found, it
stores this as bq and again stores the genes from its current
reference cell. This is analogous to the “pBest” value used
in PSO. Effectively it is a fitness metric and the genotype
associated with that fitness.

b. Exchanging Genes
Every particle has a random chance per time step e (0 ≤ e ≤
1) of exchanging genes with another particle (if it comes in
contact with another particle: distance between the
particles is less than one cell width). When an exchange
occurs, a copy of the genes of the particle with the higher
bq value replaces the genes of the particle with the lower
bq value. This provides an extra level of reproduction,
taking advantage of swarm intelligence to optimize the
search. In PSO, the best value within a local particle
neighborhood is typically called lBest. While no such value
exists in this method, this social exchange effectively
encourages a “local best” to emerge more rapidly than
otherwise.

c. Mutation
Each particle has a random chance of genetic mutation, at a
rate of m per time step (0 ≤ m ≤ 1). When a mutation
occurs, one of the genes in its array is reset to a random
value within its full range.

d. Reproduction
Particles randomly deposit random portions of their gene
arrays into the CA. The rate of depositing is d (0 ≤ d ≤ 1)
random chance per time step. This operator uses a variation
on the standard GA crossover except that it's “one-way”:
the genetic information originates entirely from the
particle, and is transferred to the particle’s cell
neighborhood, as illustrated in Figure 4.

Figure 4: An illustration of how a particle deposits portions of its
gene array into the neighborhood of its reference cell, using a
“one-way” version of genetic crossover.

The effect of this operator is that approximately one half

of the genetic information originating from the particle is
spread out into a local region. Repeated reproduction
operations in the same region with similar genetic
information increases genetic homogeneity in that region.
Crossover also effectively introduces a form of sexual
reproduction, and allows potentially successful new
genotypes to emerge from the combination of gene array
building blocks.

Parameters
Various runs of the simulation were tried with different
parameter settings. All variations are based around a
standard configuration, shown below:

For the CA:

• number of cells in both dimensions (resolution) = 128.
• number of cell states K = 4
• number of transition function sub-rules, R = 16
• maximum neighbor count M = 5

For the Particle Swarm:

• number of particles n = 500
Parameters Affecting Particle Motion:

• particle cell-neighborhood number of cells PN =
(5X5 = 25)
• inertia weight ω = 0.7
• attraction weight aw = 0.25 / resolution
• random weight rw = 0.13 / resolution

Parameters for the Genetic Operators:
• mutation rate m = 0.0001 random chance / time step

 • rate of depositing genes d = 0.05 random
 chance/time step

• crossover rate c = 0.3
• rate of genetic exchange per particle (if there is
another particle within one cell's distance) e = 0.1
random chance/time step
• rate of re-birth b = 0.001 random chance/time step

The selection criterion S is set to "constant and fast",
favoring non-quiescent structures that move at a constant
velocity, at the speed of light. Its measurement, the ride
quality per time step, q, is defined as...

qi = (|vi| - |di|) / C

where v equals velocity; d equals the change in velocity
since the previous time step; and C equals the speed of
light (equal to the width of one cell). With this selection
criterion, if particle i is riding a glider which is moving at
the speed of light, then qi will approach 1. Given the usual
settings for ω and aw, |vi| is rarely > C, and |di| is rarely >
|vi|. Still, q is clamped: (0 ≤ q ≤ 1).

Adjusting Parameters
Changing the parameters associated with the CA has little
effect on particle performance. Higher values of K and R
cause more complex dynamics, often with exotic gliders
and waves.
 The parameters affecting motion, specifically ω and aw,
are important for the particle’s ability to generally track
coherent motion. For instance, if aw is set too low, the
particle will not experience enough attraction to live cells.
If it is too high, the motion will be too erratic. Setting ω
higher has the effect of smoothing out a trajectory which
would otherwise be erratic due to small changes in the
particle’s cell-neighborhood: some gliders change their
shapes as they migrate across the CA space – larger ω
allows the particle to respond less to these small changes
and more to the overall position and velocity. Low aw
values and high ω values cause the effect of a low-pass
filter on the trajectory. Changes to these two parameters, as
well as the size of PN, allow different qualities of CA
dynamics to affect particle motion.
 The settings for crossover rate and mutation rate have
similar effects on evolution as in the case of the standard
GA. For instance, not enough mutation causes premature
convergence to a local optimum, while too much
degenerates into a random walk.
 The parameters, n, d, e, rw, and b are more unique to
this particular technique – they affect the rates at which the
particles perform the genetic operations. The standard
setting shown above is a good configuration – but it could
probably be tuned precisely for more optimal performance.

Stirring the Primordial Soup
All simulations begin with total quiescence. The only
stimulus used in this simulation is a linear “noise wave” of
random non-quiescent cell states which immediately
sweeps across the entire CA domain at a constant rate. The
width of the wave is equal to the width of 1 cell. Density w
is set to = 0.2 in most simulations (a density of 0 has no
effect, and a density of 1 creates a solid wave of non-
quiescent cells).
 The wave repeats its sweep every W = 500 steps. The
wave moves at a speed of 2C (the sweep lasts resolution/2
time steps). Moving faster than C reduces interference with
the resulting dynamics – which can never have features
that propagate faster than C. The noise wave remains
dormant between sweeps. This period of dormancy allows
the dynamics to settle to its native behavior.
 The CA can sometimes be in a highly chaotic state –
either because R is high and the transition functions are
generating a high proportion of non-quiescent cells, or a
chaotic transition function has temporarily dominated the
CA). In this case, the noise wave is not necessary, as the
soup is effectively stirring itself. However, the dynamics
inevitably shift towards the edge of chaos: it approaches
that critical boundary in which too much order is just over
the edge, and the dynamics can easily slip into quiescence
in large regions of the CA. The noise wave in this case
helps to provide some momentarily stimulation.

Observations
Figure 5 shows the output of two simulations. At the left is
a graph plotting the average ride quality of all particles
which are riding (aq). At the right is a snapshot of the
resulting CA dynamics.

Figure 5: Output from two simulations. Average ride quality over
time shown at left; snapshot of final CA dynamics at right.

The second simulation was run for approximately

70,000 time steps. In both of these examples, a sudden
jump in aq can be seen. This is attributed to the emergence
of a local homogeneous region of transition functions
which produced superior gliders.

Figure 6 shows the results of a simulation in which R
was increased to 32 to encourage more complex transition
functions. At around time 25,000 (Figure 6a) solid, long,
and narrow structures become dominant. At around time
65,000 (Figure 6b) the solid structures have broken into
individual gliders which are emanating rapidly from small
localized chaotic regions, in opposite directions (indicated
by the arrows). These chaotic regions cause a sort of
nucleation for growth, and act as glider guns.

Because the structures seen in 6b are separated by
quiescent gaps, the particles are able to detect a better ride,
due to more coherent attraction forces originating from
variance in their cell-neighborhoods. Note the increase in
aq at around 60,000 in the graph (Figure 6d). By time
100,000 (Figure 6c), a uniform global dynamic has taken
over – and the final scenario consists of a few small gliders

Figure 6e shows a close up of the box drawn in Figure
6c. A glider can be seen moving upward. It has recently
passed through a cluster of particles, many of which have
"caught a ride" on the glider because they were located in
its path. Some of these particles were only temporarily
propelled by the passing glider, and are consequently left
trailing behind, while others can be seen riding on the back
end of the glider. The gliders in this CA are smaller than
the average glider. Larger gliders more easily collect

particles because they occupy more non-quiescent cells in
the particle’s cell-neighborhood.
 The erratic jumps in aq in the graph between time
60,000 and 90,000 are most likely the result of sparse data
sampling since there is so much quiescence and fewer
riding particles, and the CA has not yet settled into its final
state. By around time 90,000, the gliders are few and
sampling is still sparse, but collisions are infrequent.

Figure 6: Three stages in the evolution of a glider-rich CA

Evolving Conway at λ = 0.273
The lambda value λ (0 ≤ λ ≤ 1) of a cell is defined as the
amount of non-quiescence resulting from its transition
function. This value is calculated using a function which
generates every possible neighborhood state given K and
R, and applies the transition function on each of these
neighborhood states. The sum of all non-quiescent values
of resultState from applying the transition function is
determined, and this is divided by the total number of
results.
 A number of simulations were run which included this
calculation. Lambda values are shown in Figure 7 as a
scatter plot in the same graph as the value of aq. (Since
both values fall within the range 0-1, they can be mapped
to the same graphical window). The scatter plot is
generated by measuring λ from 10 randomly selected cells
at each time step, and then plotting these 10 values as dots.
These simulations were run for 200,000 time steps. The
particles are not displayed in the image of the resulting CA
dynamics.

Langton (Langton 1992) found the λ for Conway to be
approximately 0.273 – this is Conway’s edge of chaos. As
a test, λ was plotted in a number of simulation runs with K
= 2, and R ranging from 3 to 10. While Conway requires
only R = 3, it was found that it easily evolves when R is
greater than 3, even though some sub-rules become
redundant or over-written. As expected, lambda converges

to 0.273 (indicated by the arrow) as the dynamics approach
Conway, as seen in the top graph in Figure 7, showing a
simulation run with R = 10.

Figure 7: Conway (top) evolves with λ converging to 0.273.
Another CA (bottom) with K=4 and R=8, also shows λ.

A few observations are worth mentioning. In simulation
runs, Conway converges more slowly in general than CA
with K > 2. As the graph shows, aq never gets very high.
Conway is less glider-rich, and the gliders move more
slowly than other CA. Thus, Conway offers less
opportunity for particles to find a good ride, at least given
the selection criterion used. The multiple horizontal lines
in the λ plotting reveal the presence of competing regions
in the CA domain, each gravitating toward different λ. At
the end of the simulation run can be seen a band of lower λ
values which competes with the λ for Conway, but begins
to weaken at the very end.

The edge of chaos changes as K varies. The bottom of
figure 7 shows the output of a simulation with K=4 and
R=8. λ converges even though aq has not increased
significantly indicating that genetic variety is decreasing.
After around 160,000 time steps, aq increases, and λ
converges more. In this particular CA, λ is slightly higher
than 0.273.

Conclusions
Perhaps there is a fundamental digital nature to motion and
the universe in general, as claimed by Edward Fredkin,
(Wolfram, 2002), and others. But we find utility in
modeling natural phenomena using higher-level,
Newtonian models. Particle Swarms model motion (point-
masses accelerated by velocities). And so they can be
mapped to certain motion-like phenomena that emerge
within CA dynamics. Setting particles to work over the
space of CA can be a way of substituting our own smooth-
tracking eye behavior, to detect the potential for glider

dynamics. But this is not the only reason for developing
this technique. A swarm of particles can bring about
emergent complexity (and perhaps universality) in CA by
engaging in an interactive dance – it is a symbiotic
relationship: it is coadaptive, and as such it models an
important theory of life: that no life form emerges entirely
on its own – there is always an environment, always other
interacting agents involved.
 The technique described in this paper applies some of
the principles and techniques of Particle Swarm
Optimization, as well as the basic operators of the Genetic
Algorithm, to the study of emergent complexity in Cellular
Automata. It is hoped that this hybrid technique will be a
contribution to the study of complexity, and a tool to
explore the nature of motion and emergent computation.

References
Berlekamp, E. R.; Conway, J. H.; and Guy, R. K. (1982).
"What Is Life?" Ch. 25 in “Winning Ways for Your
Mathematical Plays”, Vol. 2. London: Academic Press.

Das, R., Mitchell, M. and Crutchfield, J. (1994). "A
Genetic Algorithm Discovers Particle-Based Computation
in Cellular Automata" In Parallel Problem Solving from
Nature-III, Y. Davidor, H.-P. Schwefel, and R. Männer
(eds.), Springer-Verlag 344-353

Gardner, M. (1970). Mathematical Games - The Fantastic
Combinations of John Conway's New Solitaire Game
"Life". Scientific American 223 (October 1970): 120-123.

Grassé, P.P. (1959). La reconstruction du nid et les
coordinations interindividuelle chez Bellicositermes
natalensis et Cubitermes. La theorie de la stigmergie: Essai
d'interpretation des termites constructeurs. Insectes
Sociaux, 6:41-83.

Kennedy, J. and Eberhart, C. (1995). Particle Swarm
Optimization. Proceedings of the 1995 IEEE Conference
on Neural Networks.

Langton, C. (1992). Life at the Edge of Chaos, Artificial
Life II. Addison-Weskey. 41-91

Ramos, V., and Almeida, F. (2000). Artificial Ant Colonies
in Digital Image Habitats - A Mass Behaviour Effect Study
on Pattern Recognition, Proceedings of ANTS 2000. - 2nd
International Workshop on Ant Algorithms. Marco Dorigo,
Martin Middendorf & Thomas Stüzle (Eds.). 113-116

Reeves, W. (1983). Particle Systems – A Technique For
Modeling A Class of Fuzzy Objects. ACM Transactions on
Graphics Volume 2, Issue 2 (April 1983) 91-108.

Rendell, P. (2001). Turing Universality of the Game of
Life. from Collision-Based Computing, ed. Adamatzky, A.
Springer-Verlag. 513 – 539.

Shi, Y.H., and Eberhart, R.C. (1998). Parameter Selection
in Particle Swarm Optimization. 7th Annual Conference on
Evolutionary Computation, San Diego, USA. Springer.

Smith, A. R. III. (1971). Simple computation-universal
cellular spaces. Journal of the Association for Computing
Machinery, 18, 339–353.

Ventrella, J. (2000). Breeding Gliders with Cellular
Automata. http://www.ventrella.com/Alife/Cells/cells.html

Wolfram. S. (1984). Universality and Complexity in
Cellular Automata. Physica D 10: 1-35.

Wolfram. S. (2002). A New Kind of Science. Wolfram
Media.

Wuensche, Andrew. (2001). Finding Gliders in Cellular
Automata, from Collision-Based Computing, ed.
Adamatzky, A. Springer-Verlag. 381-410

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

