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Abstract 
Coherent space-time structures (gliders) which emerge in 
class IV cellular automata (CA) can be seen as “vehicles” 
that move information, as they are common in CA which 
support universal computation. A technique for evolving 
gliders from heterogeneous 2D CA is described. Rather than 
use a genetic algorithm on a population of rules, and image-
filtering to detect structures for measuring fitness, a particle 
swarm is employed which interacts intimately with the CA 
and performs genetic operators locally on the heterogeneous 
rules, as the dynamics emerge. The swarm selects for 
coherent motion. These particles do not fly on a search 
mission – instead, they “ride” on the backs of clusters of 
emerging structures, due to attractive forces. In exchange 
for a “good ride”, they reward local dynamics with more 
coherent motion by performing genetic operators of 
selection and reproduction. This technique not only 
demonstrates an efficient way to evolve a large variety of 
gliders: it also simulates emergent complexity through co-
adaptation. 

Introduction 
Cellular automata (CA) are discrete dynamical systems 
used to explore general principles in terms of how 
complexity arises from simple rules. Much research using 
CA is centered on universal computation – the ability for 
CA to generate dynamics representing basic logical 
operators that are the foundation of computation, as in a 
Turing Machine. Research in evolving CA rules that 
exhibit universality have implications for theories on the 
origins of life. As put by Chris Langton: “In living 
systems, a dynamics of information has gained control 
over the dynamics of energy, which determines the 
behavior of most non-living systems. How has this 
domestication of the brawn of energy to the will of 
information come to pass?” (Langton, 1992). 
 CA that support universality are of class IV dynamics 
(Wolfram, 1984). This is the class of dynamics supporting 
coherent space-time structures, known as gliders. Gliders, 
as well as various kinds of waves and multi-glider 
configurations, are structures that propagate across the CA 
space against a quiescent or periodic background. They can 
be described as “vehicles” which move signals across the 
CA space. It has been shown that the interactions of 
multiple gliders in controlled arrangements in the Life 
Universe, can represent the basic logical operators of 
computation. (Smith 1971), (Berlekamp, et al. 1982), 

(Rendell 2000), and others, have developed CA’s capable 
of universal computation. 

Variations of the Genetic Algorithm (GA) have been 
used to evolve CA rules which support dynamics 
exhibiting universality. (Das et al. 1994) developed GA’s 
to evolve populations of CA rules. The resulting dynamics 
of their research are able to perform computational tasks. 
(Wuensche, 2001) has developed ways to automatically 
detect space-time patterns in CA, and has classified many 
kinds of dynamics. 

This paper proposes a technique which is symbiotic, and 
emergent: a collective of particles interact with a 2D CA 
lattice with heterogeneous rules (transition functions). 
These particles detect coherent motion within the CA 
dynamics, communicate with each other about it, and – by 
performing genetic operators asynchronously over time – 
actually promote the evolution of gliders (defined in this 
paper as structures that propagate in a coherent direction 
and speed against a quiescent background – and have long 
life spans.) 

The paper is organized as follows: First is an 
explanation of why a swarm-based technique was chosen 
over a visual/analytical approach. Then, comparisons to the 
standard particle swarm optimization technique are given. 
The CA model is then described, followed by a description 
of how the particles apply the genetic operators on the CA. 
An explanation of the parameters is given, and finally, 
observations from experiments are given.  

Visual Observer vs. Interactive Agent 
The eye/brain system can easily detect many kinds of 
motion, and so we are able to recognize various moving 
patterns in CA. This may be one reason why Conway’s 
Game of Life (Gardner, 1970) is so mesmerizing to watch. 
(In this paper, Conway’s Game of Life is simply called, 
“Conway”).  

In a previous exploration in evolving gliders, an 
interactive evolution interface was developed and 
published online (Ventrella, 2000). With repeated viewings 
of the dynamics of individuals from a population of 
transition functions, the user judges according to 
aesthetics. The user’s choices act as the fitness function for 
a genetic algorithm. The question of how to automatically 
select for gliders was considered, and this lead to the 
current project. An earlier version of the technique 
presented here used a convolution filter to identify fuzzy 
objects which persist over time. This proved to be CPU-



intensive, especially when applied over simulated time. But 
more importantly, the conclusion was made that it is not 
germane to the subject of interest: emergent complexity – 
how an information-dynamic may have emerged from 
within inanimate matter. Using a visual model seemed 
inappropriate. 

The work of (Ramos and Almeida, 2000) in modeling 
artificial ant colonies to detect features in digital images, 
using pheromone modeling, provided motivation for taking 
a swarm approach. Such techniques use collaborative 
filtering, and demonstrate stigmergy, a principle introduced 
by (Grassé, 1959) to explain some of his observations of 
termite nest-building behaviors. Stigmergy recognizes the 
environment as a stimulus factor in the behavior of an 
organic collective, which in turn affects that environment. 
 Particle systems traditionally used in computer graphics 
(Reeves, 1983) provided further inspiration for some of the 
techniques used involving physical simulation.  

Particle Swarm Guides Evolution 
Particle Swarm Optimization (PSO) (Kennedy and 
Eberhart, 1995) is a searching and optimizing technique 
that is effective across many problem domains. It is 
modeled after a kind of collective adaptive behavior, 
demonstrated by the social systems of humans, insects, and 
other living systems comprised of many interacting parts. 
This paper introduces a technique which has similarities 
with PSO, but departs in a few significant ways. A 
collection of particles is superimposed upon the CA lattice, 

as illustrated in Figure 1. At every 
time step, a particle occupies the area 
corresponding to a unique cell in the 
CA lattice (imagine a marble rolling 
across a square-tiled floor). Particles 
are attracted to "live" cells, and can 
detect them if they exist within a 
local neighborhood. 
 

Figure 1: The particle swarm maps to the CA space 
 

These live cells generate an attraction force which is 
applied to the particle’s velocity. The quality of the 
particle's velocity is then subject to interpretation by the 
particle itself, based on a selection criterion S. When a 
superior quality is found, the particle stores the genes from 
the associated local area in the CA. (analogous to pBest 
value in PSO). Copies of the selected genes are continually 
deposited back into the CA over time. When two particles 
come in contact with each other, the particle with the 
highest value gives a copy of its genes to the other particle. 
This local, social exchange reinforces the effect of 
selection. There is no calculation of global best (analogous 
to gBest in PSO). Soon after initialization, local regions of 
relatively homogeneous genetics emerge. Some of these 
are dense and highly chaotic, and effectively "trap" 
particles. Other regions give birth to short-lived 
propagating structures, or "proto-gliders". These proto-
gliders can transport the particles across greater distances, 

which then spread further the genes they have selected. In 
most simulation runs, a secondary phase takes over in 
which new gliders expand the genetic regions from which 
they originated. This phase usually results in a rapid take-
over by one transition function supporting gliders.  

The CA 
The 2D lattice of automata are arranged in a square grid. 
Periodic boundary conditions enable the dynamics to wrap-
around. Time is measured in discrete steps. A cell can 
assume any state in the range from 0 to the number of 
possible states K. State 0 is the quiescent state. At each 
time step the state of each cell can be changed to another 
state according to that cell’s transition function.  

As mentioned before, each cell has its own unique 
transition function. The 9-cell Moore neighborhood is used 
as a local environment to determine the next state of the 
cell at each time step t. The transition function consists of 
R “sub-rules” applied in sequence. A single sub-rule is 
expressed as follows: the cell's current state is compared to 
a reference state (the referenceState). If the cell's state does 
not match referenceState, then the sub-rule is not applied, 
and the cell defaults to quiescence. Otherwise, the sub-rule 
compares the number of neighbors having a specific state 
(the neighborState) to a specific number (the 
neighborCount). If there is a match, then the sub-rule sets 
the cell's new state to a specific result state (the 
resultState). Thus, four parameters are used for each sub-
rule, which are genetic, i.e., they can have a range of 
possible values, and can be changed by a genetic operator. 
The possible ranges are as follows:  

 
1. referenceState can be any state in K 
2. neighborState  can be any in K state except quiescent  
3. neighborCount can be any number from 1 to M   
4. resultState can be any state in K 
 

K has been tested with values as high as 20. The number 
of sub-rules R has been tested with values as high as 80, 
and thus the number of genes per transition function 4R 
can be as high as 320. The set of all genes for a transition 
function is referred to as the gene array. The pseudocode 
below illustrates how the sub-rules are applied to 
determine the value of the new cell state.  

 



To place this in a familiar context: the transition function 
would require three separate sub-rules to define Conway, 
and the gene values would be as follows: 
 
sub   cell    neighbor  neighbor  result  

-rule#  -state   -state   -count   -state 

1     0,     1,     3,     1  

2    1,     1,     2,     1 

3    1,     1,     3,     1 
 

The number of genes required for Conway is 12. Of 
course the essence of Conway can be expressed with fewer 
parameters, using more elegant notations, but the purpose 
of this experiment is not elegance.  
 Given a large number of sub-rules, and the initial set of 
random values, it is often the case that some of these sub-
rules are redundant – having the exact same values. 
Furthermore, it is likely that many of these sub-rules, as 
they are applied in sequence, will "over-write" the results 
of previously applied sub-rules. From a Computer Science 
point of view, this would be considered sloppy 
programming. However, this encoding of the CA transition 
function allows for a larger, more flexible genetic space for 
experimentation.  

The Particles 
The particle swarm consists of n (typically 500) particles. 
Unlike the cells of the CA, the particles occupy a real 
number space (normalized to a square of size 1), and can 
thus move continuously. Similar to the CA, particles have 
periodic boundary conditions, and so if a particle falls off 
an edge of the domain, it re-appears at the opposite edge, 
maintaining its velocity. Velocity and position are updated 
every time step t as follows: For the ith particle... 
 
vi(t) = vi(t-1)ω + ai + ri  
pi(t) = pi(t-1) + vi(t) 
 
i = {1, 2...n}, where n is the number of particles. p is 
position, v is velocity, and ω is the inertia weight ( 0 ≤ ω ≤ 
1). Two forces: a and r, are added to the velocity at every 
time step, as explained below. 
 To keep the particles from going out of control as forces 
a and r are added to v over time, v is scaled at each time 
step by an inertia weight ω. (Shi and Eberhart, 1998) 
introduced an inertia weight to the standard PSO 
technique, which affects the nature of a particle’s “flying” 
behavior. The particles in this scheme perform different 
tasks than in PSO (they don’t actively fly, they passively 
ride). In either case, the precise tuning of the ω is 
important, as explained below.  

The Particle Cell-Neighborhood 
At every time step a particle maps to a unique cell in the 
space of CA, called its “reference cell”. The particle 
continually reads the contents within a local Moore 

neighborhood of radius 2 (number of cells PN = 5X5 = 
25), which surrounds and includes the reference cell, as 
shown in Figure 2. (Note that this neighborhood is larger 
than the neighborhood for the CA transition function). If 
one or more of the cells in the neighborhood are non-
quiescent, the velocity of the particle is accelerated by an 
attraction force a, which is the sum of all vectors from the 
reference cell to each non-quiescent cell in the 
neighborhood. This vector is normalized and scaled by the 
attraction weight aw.  
 
 
 
 
 
 
 
 
Figure 2: A particle cell-neighborhood containing 7 non-
quiescent cells. At left are the 7 resulting attraction vectors. At 
right is the vector resulting from summing these vectors and 
normalizing the sum 
 

When a particle’s velocity v is being accelerated by 
force a, the particle is said to be "riding", and the "quality" 
of the ride q (0 ≤ q ≤ 1) is determined by the selection 
criterion S, which is a function of velocity over time. In 
most experiments, the criterion is configured so as to favor 
a constant velocity and a maximum speed. This is 
explained below. When the particle is not riding, a random 
force vector, r, is added at each time step.  It has 
magnitude rw (random weight), and one of four possible 
orthogonal directions, randomly chosen at each time step. 
This force causes the particle to meander in a Brownian 
fashion, and allows momentary dense clumps of particles 
to dissipate. Higher values of rw cause faster dissipation.  

The Genetic Operators 
Every particle has a random chance of dying and being re-
born, at a rate of b (0 ≤ b ≤ 1) chance per time step. When 
a particle is re-born, its position is reset to a new random 
location and it takes a copy of the gene array from its new 
reference cell. Particles perform four genetic operators, 
illustrated in Figure 3, and explained below. 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 3: The four genetic operators: (a) selection, (b) exchange, 
(c) mutation, and (d) reproduction 



a. Selection 
When a particle experiences "the best ride in its life" (the 
best q found so far: bq), it stores this along with the genes 
from its reference cell. If at any time a better q is found, it 
stores this as bq and again stores the genes from its current 
reference cell. This is analogous to the “pBest” value used 
in PSO. Effectively it is a fitness metric and the genotype 
associated with that fitness.  
 
b. Exchanging Genes 
Every particle has a random chance per time step e (0 ≤ e ≤ 
1) of exchanging genes with another particle (if it comes in 
contact with another particle: distance between the 
particles is less than one cell width). When an exchange 
occurs, a copy of the genes of the particle with the higher 
bq value replaces the genes of the particle with the lower 
bq value. This provides an extra level of reproduction, 
taking advantage of swarm intelligence to optimize the 
search. In PSO, the best value within a local particle 
neighborhood is typically called lBest. While no such value 
exists in this method, this social exchange effectively 
encourages a “local best” to emerge more rapidly than 
otherwise. 
 
c. Mutation 
Each particle has a random chance of genetic mutation, at a 
rate of m per time step (0 ≤ m ≤ 1). When a mutation 
occurs, one of the genes in its array is reset to a random 
value within its full range.  
 
d. Reproduction 
Particles randomly deposit random portions of their gene 
arrays into the CA. The rate of depositing is d (0 ≤ d ≤ 1) 
random chance per time step. This operator uses a variation 
on the standard GA crossover except that it's “one-way”: 
the genetic information originates entirely from the 
particle, and is transferred to the particle’s cell 
neighborhood, as illustrated in Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: An illustration of how a particle deposits portions of its 
gene array into the neighborhood of its reference cell, using a 
“one-way” version of genetic crossover. 

 
The effect of this operator is that approximately one half 

of the genetic information originating from the particle is 
spread out into a local region. Repeated reproduction 
operations in the same region with similar genetic 
information increases genetic homogeneity in that region. 
Crossover also effectively introduces a form of sexual 
reproduction, and allows potentially successful new 
genotypes to emerge from the combination of gene array 
building blocks.  

Parameters 
Various runs of the simulation were tried with different 
parameter settings. All variations are based around a 
standard configuration, shown below:  
 
For the CA: 

• number of cells in both dimensions (resolution) = 128. 
• number of cell states K = 4 
• number of transition function sub-rules, R = 16 
• maximum neighbor count M = 5 

 
For the Particle Swarm: 

• number of particles n = 500 
Parameters Affecting Particle Motion: 

• particle cell-neighborhood number of cells PN =  
(5X5 = 25) 
• inertia weight ω = 0.7 
• attraction weight aw = 0.25 / resolution 
• random weight rw = 0.13 / resolution 

Parameters for the Genetic Operators: 
• mutation rate m = 0.0001 random chance / time step 

 • rate of depositing genes d =  0.05 random 
 chance/time step 

• crossover rate c = 0.3 
• rate of genetic exchange per particle (if there is 
another particle within one cell's distance) e = 0.1 
random chance/time step 
• rate of re-birth b = 0.001 random chance/time step 
 

The selection criterion S is set to "constant and fast", 
favoring non-quiescent structures that move at a constant 
velocity, at the speed of light. Its measurement, the ride 
quality per time step, q, is defined as... 
 
qi = (|vi| - |di| ) / C 
 
where v equals velocity; d equals the change in velocity 
since the previous time step; and C equals the speed of 
light (equal to the width of one cell). With this selection 
criterion, if particle i is riding a glider which is moving at 
the speed of light, then qi will approach 1. Given the usual 
settings for ω and aw, |vi| is rarely > C, and |di| is rarely > 
|vi|. Still, q is clamped: (0 ≤ q ≤ 1). 
 



Adjusting Parameters 
Changing the parameters associated with the CA has little 
effect on particle performance. Higher values of K and R 
cause more complex dynamics, often with exotic gliders 
and waves.  
 The parameters affecting motion, specifically ω and aw, 
are important for the particle’s ability to generally track 
coherent motion. For instance, if aw is set too low, the 
particle will not experience enough attraction to live cells. 
If it is too high, the motion will be too erratic. Setting ω 
higher has the effect of smoothing out a trajectory which 
would otherwise be erratic due to small changes in the 
particle’s cell-neighborhood: some gliders change their 
shapes as they migrate across the CA space –  larger ω 
allows the particle to respond less to these small changes 
and more to the overall position and velocity. Low aw 
values and high ω values cause the effect of a low-pass 
filter on the trajectory. Changes to these two parameters, as 
well as the size of PN, allow different qualities of CA 
dynamics to affect particle motion. 
 The settings for crossover rate and mutation rate have 
similar effects on evolution as in the case of the standard 
GA. For instance, not enough mutation causes premature 
convergence to a local optimum, while too much 
degenerates into a random walk. 
 The parameters, n, d, e, rw, and b are more unique to 
this particular technique – they affect the rates at which the 
particles perform the genetic operations. The standard 
setting shown above is a good configuration – but it could 
probably be tuned precisely for more optimal performance.  

Stirring the Primordial Soup 
All simulations begin with total quiescence. The only 
stimulus used in this simulation is a linear “noise wave” of 
random non-quiescent cell states which immediately 
sweeps across the entire CA domain at a constant rate. The 
width of the wave is equal to the width of 1 cell. Density w 
is set to = 0.2 in most simulations (a density of 0 has no 
effect, and a density of 1 creates a solid wave of non-
quiescent cells).  
 The wave repeats its sweep every W = 500 steps. The 
wave moves at a speed of 2C (the sweep lasts resolution/2 
time steps). Moving faster than C reduces interference with 
the resulting dynamics – which can never have features 
that propagate faster than C. The noise wave remains 
dormant between sweeps. This period of dormancy allows 
the dynamics to settle to its native behavior.  
  The CA can sometimes be in a highly chaotic state – 
either because R is high and the transition functions are 
generating a high proportion of non-quiescent cells, or a 
chaotic transition function has temporarily dominated the 
CA). In this case, the noise wave is not necessary, as the 
soup is effectively stirring itself. However, the dynamics 
inevitably shift towards the edge of chaos: it approaches 
that critical boundary in which too much order is just over 
the edge, and the dynamics can easily slip into quiescence 
in large regions of the CA. The noise wave in this case 
helps to provide some momentarily stimulation.  

Observations 
Figure 5 shows the output of two simulations. At the left is 
a graph plotting the average ride quality of all particles 
which are riding (aq). At the right is a snapshot of the 
resulting CA dynamics. 
 

Figure 5: Output from two simulations. Average ride quality over 
time shown at left; snapshot of final CA dynamics at right. 

 
The second simulation was run for approximately 

70,000 time steps. In both of these examples, a sudden 
jump in aq can be seen. This is attributed to the emergence 
of a local homogeneous region of transition functions 
which produced superior gliders. 

Figure 6 shows the results of a simulation in which R 
was increased to 32 to encourage more complex transition 
functions. At around time 25,000 (Figure 6a) solid, long, 
and narrow structures become dominant. At around time 
65,000 (Figure 6b) the solid structures have broken into 
individual gliders which are emanating rapidly from small 
localized chaotic regions, in opposite directions (indicated 
by the arrows). These chaotic regions cause a sort of 
nucleation for growth, and act as glider guns. 

Because the structures seen in 6b are separated by 
quiescent gaps, the particles are able to detect a better ride, 
due to more coherent attraction forces originating from 
variance in their cell-neighborhoods. Note the increase in 
aq at around 60,000 in the graph (Figure 6d). By time 
100,000 (Figure 6c), a uniform global dynamic has taken 
over – and the final scenario consists of a few small gliders 

Figure 6e shows a close up of the box drawn in Figure 
6c. A glider can be seen moving upward. It has recently 
passed through a cluster of particles, many of which have 
"caught a ride" on the glider because they were located in 
its path. Some of these particles were only temporarily 
propelled by the passing glider, and are consequently left 
trailing behind, while others can be seen riding on the back 
end of the glider. The gliders in this CA are smaller than 
the average glider. Larger gliders more easily collect 



particles because they occupy more non-quiescent cells in 
the particle’s cell-neighborhood.  
 The erratic jumps in aq in the graph between time 
60,000 and 90,000 are most likely the result of sparse data 
sampling since there is so much quiescence and fewer 
riding particles, and the CA has not yet settled into its final 
state. By around time 90,000, the gliders are few and 
sampling is still sparse, but collisions are infrequent. 

 
Figure 6: Three stages in the evolution of a glider-rich CA 
 

Evolving Conway at λ = 0.273 
The lambda value λ (0 ≤ λ ≤ 1) of a cell is defined as the 
amount of non-quiescence resulting from its transition 
function. This value is calculated using a function which 
generates every possible neighborhood state given K and 
R, and applies the transition function on each of these 
neighborhood states. The sum of all non-quiescent values 
of resultState from applying the transition function is 
determined, and this is divided by the total number of 
results.  
 A number of simulations were run which included this 
calculation. Lambda values are shown in Figure 7 as a 
scatter plot in the same graph as the value of aq. (Since 
both values fall within the range 0-1, they can be mapped 
to the same graphical window). The scatter plot is 
generated by measuring λ from 10 randomly selected cells 
at each time step, and then plotting these 10 values as dots. 
These simulations were run for 200,000 time steps. The 
particles are not displayed in the image of the resulting CA 
dynamics. 

Langton (Langton 1992) found the λ for Conway to be 
approximately 0.273 – this is Conway’s edge of chaos. As 
a test, λ was plotted in a number of simulation runs with K 
= 2, and R ranging from 3 to 10. While Conway requires 
only R = 3, it was found that it easily evolves when R is 
greater than 3, even though some sub-rules become 
redundant or over-written. As expected, lambda converges 

to 0.273 (indicated by the arrow) as the dynamics approach 
Conway, as seen in the top graph in Figure 7, showing a 
simulation run with R = 10.  

 
Figure 7: Conway (top) evolves with λ converging to 0.273. 
Another CA (bottom) with K=4 and R=8, also shows λ. 
 

A few observations are worth mentioning. In simulation 
runs, Conway converges more slowly in general than CA 
with K > 2. As the graph shows, aq never gets very high. 
Conway is less glider-rich, and the gliders move more 
slowly than other CA. Thus, Conway offers less 
opportunity for particles to find a good ride, at least given 
the selection criterion used. The multiple horizontal lines 
in the λ plotting reveal the presence of competing regions 
in the CA domain, each gravitating toward different λ. At 
the end of the simulation run can be seen a band of lower λ 
values which competes with the λ for Conway, but begins 
to weaken at the very end. 

The edge of chaos changes as K varies. The bottom of 
figure 7 shows the output of a simulation with K=4 and 
R=8. λ converges even though aq has not increased 
significantly indicating that genetic variety is decreasing. 
After around 160,000 time steps, aq increases, and λ 
converges more. In this particular CA, λ is slightly higher 
than 0.273.   

Conclusions 
Perhaps there is a fundamental digital nature to motion and 
the universe in general, as claimed by Edward Fredkin, 
(Wolfram, 2002), and others. But we find utility in 
modeling natural phenomena using higher-level, 
Newtonian models. Particle Swarms model motion (point-
masses accelerated by velocities). And so they can be 
mapped to certain motion-like phenomena that emerge 
within CA dynamics. Setting particles to work over the 
space of CA can be a way of substituting our own smooth-
tracking eye behavior, to detect the potential for glider 



dynamics. But this is not the only reason for developing 
this technique. A swarm of particles can bring about 
emergent complexity (and perhaps universality) in CA by 
engaging in an interactive dance – it is a symbiotic 
relationship: it is coadaptive, and as such it models an 
important theory of life: that no life form emerges entirely 
on its own – there is always an environment, always other 
interacting agents involved.  
 The technique described in this paper applies some of 
the principles and techniques of Particle Swarm 
Optimization, as well as the basic operators of the Genetic 
Algorithm, to the study of emergent complexity in Cellular 
Automata. It is hoped that this hybrid technique will be a 
contribution to the study of complexity, and a tool to 
explore the nature of motion and emergent computation. 
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