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Abstract. This chapter describes a technique for generating semi-abstract figurative imagery 
using variations on the Mandelbrot Set, evolved using a genetic algorithm. The Mandelbrot Set 
offers an infinite supply of complex fractal imagery, but its expressive ability is limited, as far 
as being a “material” for visual manipulation by artists. The technique described here achieves 
a unique and varied brand of imagery by manipulating the mathematical function that generates 
the Set in a way that might seem unsavory from the standpoint of complex analysis – but it is 
very rich in terms of visual possibilities. Inspired by the author’s earlier interest in creating 
animalistic and pseudo-figurative forms by tweaking the function, a technique was developed to 
evolve figurative forms using a digital image as the objective fitness function for a genetic 
algorithm. Experiments reveal that the function has limits in terms of its ability to generate 
forms that imitate specific detailed images. But this is actually a desired quality, as it lends an 
enigmatic quality to the resulting artworks. These limitations also elicit questions about the 
ability for parametrically-based imaging systems (like fractals) to produce representational art. 
The analogy to genetics and animal morphology is presented, and this is used as a framework to 
describe the behavior of the Set as it is tweaked, and pulled “out of the complex plane” (the 
canvas upon which the Set is normally painted). It provides a genetic vocabulary for describing, 
and thinking about, figurative art-making. 

1   Introduction 

The art of portraiture includes many art mediums and many styles. In the case of self-
portraiture, an artist's choice of medium  is sometimes the most important aspect of 
the work. A love for math and art, and an irreverence concerning the massacring of 
math equations for visual effect, inspired the medium described in this chapter. It 
evolves manipulation of the Mandelbrot Set to imitate shapes in digital photographs 
of human and animal figures. To exploit the Mandelbrot Set's potential for this, the 
technique emphasizes shading the "flesh" (the interior of the Set), rather than the 
outside, as is normally done. No image has been generated that looks exactly like a 
specific figure in detail - nor is this the goal. But the images do have the essence that 
they are "trying" to imitate something. As an example, Figure shows evolved images 
that are all based on a single digital image of the author's head. The technique for 
generating these images will be explained near the end of the chapter. 
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Fig. 1. Four examples based on an image of the author's head 

 
The technique is partly inspired by two movements in Modernist painting: abstract 
expressionism and surrealism. But in this case, the effect is not achieved by the phys-
ics of paint on canvas and an artist's dialog with an emerging image. Instead, the ef-
fect is achieved by dynamics in the complex plane (the canvas upon which the Man-
delbrot Set is painted) and an artist's algorithmic searching methods.  
 After developing many artworks by painstakingly adjusting numerical parameters, 
an interactive interface was added to help automate the selective process and to elimi-
nate the need to control the numbers directly. Then a question came up: is it possible 
to evolve these kinds of images automatically using a genetic algorithm and an image 
as the objective fitness function? Also, given a specific image as a fitness function, 
what are the limits of the Mandelbrot Set - and the array of parameters added to in-
crease its dimensionality and plasticity - to imitate images? How evolvable are these 
mathematically-defined forms? And for the sake of image-making, are not other pa-
rametric schemes more evolvable - such as Koch fractal construction, IFS, chaotic 
plots, L-systems, cellular automata, etc? General questions like this will be threaded 
throughout this chapter, touching upon the nature of the Mandelbrot Set, and the no-
tion of genetic art as imitation of natural form.  
 The Mandelbrot Set has a special place in the universe of visual materials available 
to artists for manipulation - it has a peculiar complexity all its own. And the fascina-
tion with its arbitrary symmetry and beauty can reach near-religious levels. Roger 
Penrose believes, as do many mathematicians and physicists, that there is a Platonic 
truth and universality to mathematics, and that the Mandelbrot Set demonstrates this. 
It was not, and could never have been, invented by a single human mind [Penrose, 
2004 ]. It could only have been discovered. On the other hand, [Lakoff and Nunez, 
2000] present a convincing thesis that mathematics springs out of the embodied hu-
man mind - math is an invention of the human mind which expresses our physical 
relationship with the world, and the metaphors that have evolved in our brains. Math 
is not a universal truth waiting to be "discovered", but a language of precision, con-
tingent upon the nature of the human brain and the ecology from which it evolved.  
 We will not try to address this debate in this chapter. In fact, the technique de-
scribed in this chapter circumvents the debate by way of a decidedly un-platonic ma-
nipulation of the math. This kind of manipulation may be unsavory from a mathe-
matical standpoint, but from an artistic standpoint, it breaks open the canvas of the 
complex plane to a larger visual vocabulary. 
 Even when taking this irreverent stance, and choosing to yank the function out of 
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the realm of complex analysis, a tweaked Mandelbrot Set still possesses remarkable 
properties, and it appears not to be as plastic and malleable as a lump of sculptor's 
clay. It is more like an organism, whose entire morphology, at every scale, is deter-
mined by a specific genetic code and the constraints of its iterative expression. Rota-
tional behavior is characteristic of the complex plane, and is caused simply by the 
multiplication of two complex numbers. Curvilinear, rotational, and spiral-like fea-
tures are common, and they are still present when the Mandelbrot function has been 
manipulated, as seen in the detail at right of Figure 2. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Curvilinear forms remain upon manipulation of complex plane equation 
 
And so, while this approach may be irreverent, what can be learned about the nature 
of this particular artistic canvas elevates admiration for the magic of the Mandelbrot 
Set, and its extended family of related fractals.  
 
 Like the playful and evocative variations on complex plane fractals created by 
[Pickover 1990] and others, the technique described here is heavy on the tweaking. It 
is not focused on finding interesting regions in the pure un-altered Set (as in "Mandel-
zoom"). It is more like sculpting than nature photography. Or perhaps it is more like 
genetic engineering than painting. For this reason, in the remainder of this chapter the 
technique will be called "Mandeltweak". 
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1.1   Genetic Space 

Fig. 4. Mandelbrot Set in the middle of two 2D genetic spaces 
 
Inspired by a metaphor which [Dawkins, 1986] used to describe species genotypes as 
points existing within a vast multi-dimensional "genetic space", Mandeltweaks are 
likewise considered as existing within a genetic space. Figure 4. shows two genetic 
spaces, 3X3 on the left side and 5X5 on the right. In each image, two genes vary in 
even increments, one in the horizontal dimension, and the other in the vertical dimen-
sion. The values are default in the middle of each space, and this is where the Man-
delbrot Set lies. The image on the left is of a large nine-panel photo series shown in 
various gallery settings. 

1.2   Genetic Parameters  

The number of ways one can alter a digital image is practically infinite. Just consider 
the number of plug-in filters available for software tools like Photoshop. But while an 
arbitrary number of filters, distortions, layerings, etc. could have been applied with 
parameters for manipulating Mandelbrot images in the pixel domain, the choice was 
to keep all variability to within the confines of the mathematical function. The game 
is to try to optimize the parameters of the manipulated Mandelbrot equation so that 
the resulting images resembles an ideal form (or in some cases an explicit target im-
age). This is a challenge because the mapping of genetic parameters to image attrib-
utes (genotype to phenotype) is non-trivial, and unpredictable.  
 Mandeltweak is not just an art-generating technique - it is a sandbox for exploring 
the notion of genetic expressivity, imitation, and image perception. Throw in a little 
Dawkins, a bit of Picasso, a touch of Rorschach, and a good dose of Mandelbrot math, 
and you have the basic motivational profile behind this exploration. 
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2   Background 

The emergence of abstractionism in Modern painting is often cited in reference to the 
invention of photography at the turn of the century. When photography came onto the 
scene, painters felt less need to replicate reality, and they became more interested in 
forging a true painterly art - true to the medium. This is part of the program of Mod-
ernism in general.  
 Perhaps because of an innate desire in humans to replicate reality, and the strong 
science influence in early computer graphics development, an implicit goal was opti-
cal realism. The pursuit of realism continues with refinements to ray-tracing, radios-
ity, and other 3D rendering techniques. Recently we hear of new techniques that emu-
late painterly styles, described as "non-photorealistic" - a curious term - as if there 
were something fundamental about photorealism to base descriptions of other visual 
styles.  
 But in fact, the computer has nothing in its physical nature that would lend itself to 
any particular imaging style - constrained either by canvas and brush, or by film and 
lens. There is however one thing about the computer that would qualify as part of its 
true nature, and therefore, a determinant in an artistic style - that is information proc-
essing (of great quantity and speed). The sciences of chaos and complexity, and tech-
niques of fractal-making have brought about a revelation that the information-
processing power of computers could generate beauty, complexity, and organic form 
reminiscent of familiar natural processes. New visualization realms have since blos-
somed as forms of visual language that are truly unique to the medium.  
 While one may not be able to claim that these image-making techniques produce 
"realistic" art (in the same sense that a painting by Piero della Francesca is realistic) 
they do mimic some very compelling and familiar complex aspects of nature. The 
genetic algorithm is an example of a recursive tool which, when combined with some 
parametric-based image-making system, such as fractals or cellular automata, can 
create naturalistic processes, and sometimes realistic forms and motions. In the Euro-
pean renaissance, perspective was a tool that significantly advanced both art and sci-
entific thinking. In the late 20th century, the computer (and recursive processes by 
which simple rules are applied repeatedly) is a tool that has propelled another renais-
sance. Chaos, complexity, and fractals reveal another aspect of reality–which is 
churning away at every second - it reveals the deep structure and iterative evolution of 
form in the world.  
 
The Mandelbrot Set 
The Mandelbrot Set has been called "the most complex object in mathematics" 
[Dewdney, 1985]. It is like the mascot of this new renaissance - replicated in popular 
science books like a celebrity. When looking at it in its whole, it looks like a squashed 
bug - not pretty. But it's deep remote recesses reveal amazing patterns that provoke an 
aesthetic response. Is the Mandelbrot Set a form of abstract art? No. Not according to 
the definition of abstractionism as human-made art that is "abstracted" from nature, 
with human interpretation. According to the platonic view, the Mandelbrot Set "just 
is". It has been hiding in the folds of complex mathematics until humans and comput-
ers revealed it. But consider the canvas upon which the Mandelbrot Set is painted. We 
can alter our mathematical paint brush from z = z2+c to something else which is not so 
clearly defined, and make a departure from its platonic purity. We can render images 
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with the kind of interpretation, imprecision, and poetry that distinguishes art from 
pure mathematics. Iteration in the complex plane, then, is considered a new art form, 
which emerges in the Recursion Renaissance. 
 It is possible that the Mandelbrot Set was discovered a handful of times by separate 
explorers, apparently first rendered in crude form by Brooks and Matelski [Penrose, 
2004, p 17]. Benoit Mandelbrot discovered it in the process of developing his theory 
of fractals, based on earlier work on complex dynamics by Fatou and Julia [Mandel-
brot, 1977]. His work, and subsequent findings by [Douady and Hubbard, 1985], 
helped popularize the Set, which now bears Mandelbrot's name.  
 Briefly described, the Set is a portrait of the complex function, z = z2+c, when iter-
ated in the two-dimensional space known as the complex plane, the space of all com-
plex numbers. When the function is applied repeatedly, using its own output as input 
for each iteration, the value of z changes in interesting ways, characteristically differ-
ent depending on c (i.e., where it is being applied in the plane). The dynamics of the 
function as it is mapped determines the colors that are plotted as pixels, to make im-
ages of the Set. Specifically, if the magnitude of z grows large enough (>2) and "es-
capes" to infinity, it is considered outside of the Set. The inside is shown as the black 
shape on the left of Figure 5. 
 The Set has become a favorite subject for computer art. On its boundary is an infi-
nite amount of provocative imagery. The most common visual explorations involve 
zooming into remote regions and applying color gradations on the outside of the Set 
near the boundary. This is somewhat like simple point-and-shoot photography, with a 
bit of darkroom craft added. However a variety of techniques have been developed 
along these lines to search-out interesting remote regions, including an evolutionary 
algorithm developed by [Ashlock, 2006]. A particle swarm for converging on the 
boundary, under different magnifications, was developed by [Ventrella, 2005]. 
 Deeper exploration into the nature of the Set is achieved by manipulating the 
mathematics, to reveal hidden structures. [Pickover, 1990] has fished out a great 
wealth of imagery by using varieties of similar math functions. His books on frac-
tal/chaotic image-making techniques have contributed to the popularization of com-
puter-generated fractal art.  
 [Peitgen, et. al, 1988] describe a variety of complex plane fractals, with ample 
mathematical explanations. [Dickerson 2006], as well as many others, have explored 
higher-order variations of the function to generate other "Mandelbrot Sets" as they are 
sometimes called. According to Dickerson, the equation can be generalized to: z = a * 
f(z) + c, where a is a scale constant and f(z) is one of a broad range of functions, such 
as higher powers of z, polynomials, exponentials and trigonometric functions. As an 
example of a higher-order function: zt+1 = zt

3 + c creates the shape shown at the right 
in figure 5. This "Mandelbrot cubed" function is used in some experiments described 
below.  
 
 
 
 
 
 
 
 
 



Published in: Design by Evolution, Natural Computing Series. ISBN 978-3-540-74109-1. Springer Berlin 
Heidelberg, 2008, p. 145 

 7 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Mandelbrot  Set (left), and Mandelbrot "cubed" (right) 
  
The algorithms used in Mandeltweak can also be considered as a generalization from 
z=z2+c to z= f(z)+c, only in this case, the complex nature of the number z is violated: 
the real and imaginary components of the number, as exposed in the software imple-
mentation, are manipulated. In the Phoenix fractal, discovered by Shigehiro Ushiki 
[5], the real and imaginary parts of the equation are likewise tweaked separately. 
More examples of separate treatment of the real and imaginary parts of the equation 
are emerging. These are described in various web sites on the internet, including a 
technique developed by [eNZed Blue, 2005]. 

2.3   Evolutionary Art 

One way an artist can approach mathematically-based image-making is to identify a 
number of variables that determine visual variations and to tweak them to suit his/her 
own aesthetic style. The more variables available for tweaking, the more the artist can 
potentially tweak to reach some level of personal expression. The problem is that in 
most cases the variables are interdependent, and it is hard to predict the effects of  
variables in combination. Besides, most artists would rather not use numbers to ma-
nipulate visual language. Evolutionary computation to the rescue. 
 Evolutionary Art (EA) is a relatively new addition to a long history of art-making 
tools. In EA a computer software program becomes a creative collaborator to the 
artist. The most common process is interactive evolution (also called "aesthetic evolu-
tion" or "aesthetic selection"). In contrast to the standard genetic algorithm (GA) 
[Goldberg, 1989], the selection agent is not determined by an objective fitness func-
tion, but rather by a human observer/participant (the artist), whose aesthetic choices 
guide the direction of evolution in a population of variations of an artwork. [McCor-
mack, 2005] outlines a number of problems that remain open as we articulate and 
refine the tools for EA. Among these are the problem of finding interesting and mean-
ingful phenotypes, which are capable of enough variation to allow for artistic free-
dom. 
 Among the earliest examples of evolutionary art are the work of Latham [Todd and 
Latham, 1992]. [Sims 91], has applied genetic programming [Koza, 1992] to various 
visual realms. [Rooke, 2001], [Ventrella, 1994], and others have developed evolution-
ary techniques for generating visual art. Most of this work is abstract (or "abstract-
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sculptural" - rendered with 3D shading), and use interactive evolution as the tech-
nique for breeding images.  

3   Technique 

The standard black-and-white figure of the Mandelbrot Set is created as follows: on a 
rectangular pixel array, determine whether each pixel lies inside or outside of the Set. 
If inside, color the pixel black, otherwise, color it white. This 2D array of pixels maps  
to a mathematical space (x, y) lying somewhere within the range of  -3 to1 in x, and -
2 to 2 in y. The values x and y represent the real and imaginary components of a win-
dow on the complex plane. The function  zt+1 = zt

2 + c is iterated repeatedly. The value 
c is a complex number (the 2D location in the complex plane corresponding to the 
pixel), and z is a complex number which starts at (0,0i) and is repeatedly fed back into 
the function. This is repeated until either the number of iterations reaches a maximum 
limit, or the magnitude of z exceeds 2. If it exceeds 2, it is destined to fly off to infin-
ity, and this signifies that it is outside of the Set. Expressed in pseudocode:  
 
For each pixel do: 
{ 
    map screen pixel values (i,j) to real number values (x,y) 
    zm = 0 
    zx = 0 
    zy = 0 
    timer = 0 
     
    while ( zm < outsideTest AND timer < maxIterations )  
    { 
        z1 = y + zy * zy + zx * -zx  
        z2 = x + 2.0 * zx * zy 
        zm  = z1 * z1 + z2 * z2 
        zx = z2 
        zy = z1 
        timer = timer + 1 
    } 
          
    if ( zm < outsideTest ) 
        set pixel color black 
    else  
        set pixel color white    
 
    plot pixel(i,j)  
} 

 
This is not implemented as optimally as it could be, but it exposes more variables for 
manipulation - which is part of the Mandeltweak technique.  
 MaxIterations could be any positive number, but higher numbers are needed to 
resolve a detailed definition of the boundary, which is especially important for high 
magnifications. Mandeltweak does not require high magnifications, and so this value 
ranges from 30 to 50. The mapping of (i,j) to (x,y) determines the location and the 
magnification in the complex plane. Complex number z is represented by zx and zy. 
The variable zm is the squared magnitude of z. The variable 'outsideTest' is set to 4 
for normal Mandelbrot plotting, but it could be set to other values, as explained be-
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low. 
 Note that swapping x and y rotates the Set 90 degrees. The Mandeltweak approach 
is to make the real number axis vertical, orienting the Set as if it were a fellow entity 
with similar bilateral symmetry, as shown in Figure 6.  

3.1   Coloration 

The typical coloration scheme for Mandelbrot Set images applies a color gradient on 
the outside of the Set which maps to the value of timer. A smoother version of the 
outside gradient, described by [Peitgen, 1988] can be achieved by replacing the value 
timer with: 0.5 * log(z) / 2timer. Setting outsideTest to higher values, such as 1000, 
makes it smoother. Mandeltweak uses this technique, and in most cases, the back-
ground is rendered with a light color, which shifts to a dark color very close to the 
boundary. The effect is a mostly-light colored background, with some emphasis on 
the complex boundary, as seen in figure 6d.  
 The inside of the set is colorized with a gradient that maps to zm+za, where za is a 
special value determined by analyzing the orbit of z during iteration. As the value if z 
jumps around the complex plane, the angle between each jump is recorded, and when 
iteration is complete, the average angle is calculated. This is normalized, and then 
used as a value that roughly corresponds to the characteristic of z's orbit. In addition, 
before being applied to the color gradient, both  zm and za are modulated by sine 
waves whose frequencies and phases are evolvable. The result is that a large variety 
of possible coloration scenarios are possible, and it accentuates hidden features in the 
mathematical flesh. Both zm and za are normalized (0-1) before used for coloration.  
 
 
 Figure 6 shows the default Set (a), followed by rotation (b), colorization (c), and 
finally tweaking (d), which is explained below. 
 

 a b c d 
 

Fig. 6. (a) The default Set, (b) rotated, (c) colorized, (d) tweaked  
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3.2   Morphological Tweakers 

The kernel of the Mandelbrot equation is in the two lines above that express z = z2 + 
c: 
 
z1 = y + zy * zy + zx * -zx 
z2 = x + 2.0 * zx * zy 

 
Arbitrary morphological tweakers are added, which are "pro-visual", and "a-
mathematical" ("anti-mathematical" would be too-negative a term). Mother Nature, in 
her evolutionary creativity, works with phenotypes and their interactions in ecological 
reality - that is her artistic canvas. Likewise, it is the phenotype that provides the 
design-space for Mandeltweak. A typical set of tweakers are as follows: 
 
z1 = y + (zy+p1) * (zy*p2) + (zx*p3) * ((zx*p4) + p5) * p6 
z2 = x + p7 * (zx+p8) * (zy+p9) 

 
p1 through p9 are real number variables, most of which are set to 0 as their default 
values. p2, p3, and p4 are set to 1; p6 is set to -1; and p7 is set to 2 as their default 
values. Each tweaker can deviate from its default value within a range (extending in 
both the negative and positive directions). Each tweaker has its own range, and it 
controls a unique visual manipulation. For instance, p2 is responsible for the distor-
tion shown in Figure 6d. In addition to these morphological tweakers, the following 
lines:  
 
zm  = z1 * z1 + z2 * z2 
zx = z2 
zy = z1 

 
are expanded as follows:  
 
zm = z1 * z1 + z2 * z2 
zm = zm * (1-p10) + z2 * p11 
zx = z2 * (1-p12) + (z1*p13) 
zy = z1 * (1-p14) + (z2*p15) 

 

Also, before the iterative loop, the lines:  
 
zx = 0 
zy = 0 

 
are expanded to:  
 
zx = p16 
zy = p17 

 
where p16 and p17 are set to 0 as default. When set to non-zero values, these tweak-
ers give an artificial jump-start to the value of z before entering the iteration loop, 
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affecting the resulting morphology.  
 
Since the kernel of the Mandelbrot equation could also expressed as 
 
z1 = y + zy*zx + zx*zy 
z2 = x + zx*zx - zy*zy 

 
a different set of tweakers could be applied as follows: 
 
z1 = y + ((zy*p1 )+p9 )*((zx*p2 )+p10) + ((zx*p3 )+p11)*((zy*p4 )+p12) 
z2 = x + ((zx*p5 )+p13)*((zx*p6 )+p14) - ((zy*p7 )+p15)*((zy*p8 )+p16) 

 
This is a more orderly expansion, and it provides a larger genetic space than the p1-p9 
shown in the original expression above. New and intriguing forms exist in this space 
as well. 
 The examples of tweakers that we have just seen are not the whole story. However, 
to describe all the variations that have been tried could take potentially many more 
pages. These examples should give a general sense of how the technique is applied. 
The reader, if interested in trying out variations, is encouraged to choose a set of 
tweakers that satisfy individual aesthetics. Mandeltweaking is more an Art than a 
Science. 
 If you were to scale the variable x (the real number part of c) by something like 1.4, 
the Set would get squashed along the x axis - this is not considered a genetic tweaker, 
as it amounts to a trivial pixel-wise distortion, or a uniform warping of the complex 
plane. The tweakers described above instead change the dynamics of the math as it 
iterates, focusing on the expansion of the complex number z, which causes unpredict-
able changes in morphology.  
 These tweakers are stored in an array (a phenotype), which is generated from an 
array of genes (a genotype). The genotype holds the normalized representations of all 
the tweakers, in the range 0-1. Before an image is generated, the genotype is mapped 
to the phenotype, taking into consideration the tweakers' default values and ranges. 
This normalized genotype representation will come in handy as explained later when 
a genetic algorithm is applied to the technique. 
 Besides color and morphology tweaking, the entire image can be magnified, ro-
tated, and translated by values which transform the window onto the complex plane 
before the calculations are applied. There are four tweakers for this, and they deter-
mine angle of rotation, magnification, translation in x, and translation in y. These can 
be thought of as transformations of the digital microscope that views the complex 
plane. 
 When these tweakers are set to their default values, the function produces the Man-
delbrot Set. The values p1 through p17 determine the morphologies within a superset 
of the Mandelbrot Set, called Mandeltweak. Any mutation offset from a default value 
will push the mathematics into a dimension that does not obey the normal rules of 
complex numbers. All of the tweakers have clearly-defined defaults, and so all ex-
periments can be considered as deviations from the true Set - deviations from its 
home in the complex plane. This is the control point - the point of registration from 
which to build a visual vocabulary describing this multidimensional genetic space.  
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3.3   Interactive Evolution for Artistic Breeding 

Originally, the Mandeltweak software was given an interface to generate images 
which could be repeatedly reviewed and altered, until interesting and provocative 
forms were resolved. These sessions sometimes involved hundreds of adjustments, in 
terms of both morphology and color. Considering the accumulated memory in the 
artist's mind of the variations being explored, you could say that a sort of wetware 
genetic algorithm was being run, resulting in a convergence towards a desired image. 
These sessions were sometimes very long. Hundreds of images were produced, and 
stored mostly as photographs, and exhibited in art shows and on the web [Ventrella, 
2004]. Figure 7 shows six examples of images created with this process. 
 

 
Fig. 7. Some early examples of Mandeltweaks 

 
This experience set the stage for developing a modified genetic algorithm with an 
interactive evolution interface, whereby the artistic choices could be stored in a popu-
lation of tweak settings, and re-circulated within the population to offer up combina-
tions of favorite images. This was a great improvement - a natural application of evo-
lutionary programming to the problem domain. This interactive evolution scheme is 
described below.  
 
1. Initialization 
A population of genotypes is generated, with their genes initialized randomly, distrib-
uted evenly in the range (0-1). Population size is usually set to around 100. The geno-
types are also initialized with random fitness values ranging from 0 to 1 (which is 
meaningless at first, but as we shall see, these fitness values will gradually take on 
meaning).  
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2. Iteration  
The iterative loop has three basic components: (a) mating, (b) evaluation, and (c) 
death. This is explained below. 
 
(a) Mating via Tournament Selection 
Two random, relatively fit genotypes are chosen as parents, each by way of a compe-
tition for relative fitness, as follows: (1) two competitor random genotypes are cho-
sen, and their fitness values are compared. The one with the highest fitness is kept as 
"parent 1". (2) Another competition is run, and the winner is chosen as "parent 2". 
These two relatively-fit parent genotypes then mate to produce one offspring geno-
type using crossover, with some chance of mutation. During mating, standard cross-
over and mutation techniques are used, with crossover rate C = 0.2, and mutation rate 
m ranging from 0.01 to 0.1 in most experiments. While parent genotypes are being 
read to generate the offspring genotype, gene-by-gene, there is C chance of the parent 
genotype which is being copied to the offspring to swap to the other parent. And there 
is m change that the gene being read will mutate. If mutated, a random number is 
added to the gene value ranging between -1 and 1, weighted towards zero, with Gaus-
sian distribution, to favor smaller jumps over larger jumps, but not ruling out bigger 
jumps. If after mutation, the gene value falls out of the normal interval 0 to 1, it wraps 
around to keep the value normalized.  
 
(b) Evaluation 
The resulting offspring genotype is then mapped to a phenotype to determine the 
tweakers for generating a new image. The user evaluates this image by giving it a 
value in the range of (0-1). Different versions have been explored as far as inputting 
this value, including binary (0=bad vs. 1=good); a three-choice scheme (bad-medium-
good); and continuous (clicking the mouse on the screen, with the location from left 
to right or bottom to top determining the value from 0 to 1). There are pros and cons 
to each of these input techniques, which will not be covered here - what's important is 
that a value ranging from 0-1 is provided by the user. 
 
(c) Reproduction and Death 
Once a fitness value has been provided for this image, the associated offspring geno-
type replaces the least-fit genotype in the population. 
 This process is iterated indefinitely. At first, the user experiences no progress, es-
pecially in the case of large populations (like more than 100), but in time, the choices 
that the user has been making start to effect the population, and images begin to come 
up that are preferable, having visual qualities that the user had been responding posi-
tively to.  
 In some experiments, the selection of parent genotypes is set to not take relative 
fitness into consideration, and so any two genotypes can become parents. In this case, 
the only driving force for evolution is the fact that the least-fit individual is killed off 
to make room for the offspring. This causes slower convergence, but better explora-
tion of the genetic space, but it appears not to have a major impact on the outcome. 
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3.4   One Image at a Time, One Mating at a Time 

A common design in interactive evolution schemes is to present the user with a col-
lection of images with variation, and for the user to compare these and make some 
selection based on that comparison. A major difference in this technique is that the 
user is presented with only one image at a time, and uses memory to compare with 
other images seen. The reason for this interaction design is that it enhances the expe-
rience of perceiving an individual image as a work of art, and allows the aesthetic 
sense to operate more like viewing art, rather than like shopping for a product. This 
interface is meant to allow the process of interactive evolution to be pure and direct - 
an evolving dialog between the artist's visual memory and a series of images, with an 
arc of aesthetic convergence that threads through the experience.  
 
Many genetic algorithm schemes use generational selection: all the genotypes in the 
population are sized-up for fitness in one step, and then the entire population is up-
dated to create a new generation of genotypes, which selectively inherit the genetic 
building blocks from the previous generation. For software implementation, a backup 
population is required in order create each new generation. In contrast, this scheme 
uses steady-state selection: it keeps only one population in memory, and genetic evo-
lution is performed on that population one individual at a time. This is admittedly 
slower than the classic scheme, but it does have the effect of preserving the most fit 
genotypes at all times. And the grim reaper only visits the least fit. 

3.5   Fitness Decay  

At the start of the process, fitness values are randomly distributed from 0 to 1. Since 
relatively-fit individuals are chosen to mate and offer up Mandeltweak images for 
evaluation, the first images reviewed are essentially random in their relative quality. 
But this soon begins to change as the user provides meaningful fitness values. In 
addition to this, a global decay scalar d is applied to all fitness values at each iteration. 
(d = just under 1, typically 0.99). The initial effect of d at the beginning of the process 
is to allow genotypes that were randomly initialized with high fitness values to "back 
away" as new genotypes rise to the top of the fitness range as a result of positive user 
selection. The distribution of fitness values begins to reflect user choice.  
 Once the initial random distribution of fitness values has given way to meaningful 
values from user interaction, the decay operator then begins to serve a different pur-
pose: that of allowing for meandering aesthetic goals. Individuals that were once 
considered fit are allowed to fade into the past, while their offspring take the spot-
light. The decay effect roughly corresponds to memory. It avoids having the highest 
fit individuals dominate the population and prohibit new discoveries to take the lead. 
If there were no fitness decay, the population would lose any flexibility to respond to 
changes in the aesthetic directory. The fitness decay operator is like the evaporation 
of ant pheromones - chemicals released by ants for communicating which build up in 
the environment and permit ants to establish trails for foraging. If pheromone scent 
never decayed, ant colonies would not be able to adapt to changing distributions of 
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food, and their collective behavior would become rigid. Same with this fitness decay: 
it gives the user a chance to push the population in new directions when an aesthetic 
dead-end is reached.  
 The value d is important. If it is set too low (like, 0.9 - decaying too quickly), then 
the results of the user's choices will not stay around long enough to have an effect on 
the general direction of evolution. If it is too weak (like 0.999 - decreasing too slowly) 
then inertia sets in: user selections that were either "mistakes" (or choices that are no 
longer relevant) will stick around too long and make evolution inflexible. This value 
is sensitive to population size, user psychology, the nature of the evolvable imagery, 
mutation rate, and other factors.  
 The interactive evolution technique just described has a few notable properties:  
 
(1) it always preserves the most fit individuals (imagine looking at a picture, liking it, 
and choosing to keep it in a box for future use - you can rely on it being there for a 
long time).  
 
(2) it always overwrites the least-fit individual, which has the effect of increasing 
average fitness over time. (note that the lowest fit individual fell to its place either 
because the user put it there directly by selection, or else it slowly "faded into the 
past" as a result of  fitness decay - in both cases, it is appropriate to replace it).  
 
(3) it allows user aesthetics to change direction over time, and to re-direct the popula-
tion. 

3.6  Using a Digital Image as a Fitness Function  

The most recent stage in this progression towards automating the process is to use an 
image as an objective fitness function. Instead of a user providing the fitness of a 
Mandeltweak based on aesthetics, the Mandeltweak is compared to an ideal image to 
determine similarity. The genetic algorithm for this scheme is the same as the interac-
tive evolutionary scheme described above, except for three important differences:  
 
(1) The human user is replaced by an image-comparison algorithm, which uses a 
single ideal image. 
 
(2) There is no fitness decay operator. Fitness decay is considered a "psychological" 
mechanism, and is not needed in this case. Also, since the ideal image is static (as 
opposed aesthetic whim), there is no need for the flexibility that decay affords. 
 
(3) Instead of setting all fitness values randomly at initialization, the initial genotypes 
are used to generate an initial population of Mandeltweaks to establish meaningful 
fitness values. This becomes the starting point for the iterative loop.  
 
The ideal image is either painted in Photoshop, pulled off of a website, or snapped 
with a digital camera and then post-processed with Photoshop. Only gray-scale im-
ages are used, for three reasons: (1) it reduces the complexity of the experiment to 
fewer variables, (2) the addition of color was not found to contribute significantly to 
the perception of figurative form in the images, and (3) it was an artistic choice: to 
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encourage the resulting images to resemble black-and-white portrait photography. 
Also, the outside of the Set is colorized only with white (with black gradation very 
close to the boundary), and all ideal images have a white background, to simplify the 
technique and to disambiguate figure vs. ground. To give the images a sepia-tone 
quality with a subtle blue shadow effect, the gray scale in the final image is altered 
slightly. While keeping pure black and white at the extremes, a slight blue shift in the 
lower range, and a slight orange shift in the upper range, are applied. 
 
True Color Scheme 
A true color scheme was explored at one time, in which extra genes were added to 
accommodate the red, green, and blue components of the image. This scheme was not 
fully explored, and it was decided that a hue-saturation-luminance scheme, as op-
posed to red-green-blue, would be better – this is high on the list of things to come 
back to in a subsequent version of the software.  

3.7   Image Resolution 

It was found that comparing a Mandeltweak image with the ideal image could be 
done adequately using a resolution r of only 50 pixels. So, the ideal image consists of 
r2 (50*50 = 2500) pixels, where each pixel color is a shade of gray ranging from black 
to white in g = 256 possible values (0<=g<=255). When a Mandeltweak is generated 
so as to compare with the ideal image to calculate a fitness value, it is rendered at the 
same resolution r. The images are compared, pixel-by-pixel, and so there are r2 pixel 
value differences used to determine the difference between the images, and thus the 
fitness. 
 
Note that even though the Mandeltweak is rendered at a specific resolution for com-
parison, this does not mean that it could not be re-rendererd at a higher resolution. In 
fact, since the genes are what constitutes the representation of the image (NOT the 
pixel values), it could be re-rendered at any arbitrary resolution. What r represents, 
then, is the amount of image detail that could potentially be compared. And since the 
mimicking ability of Mandeltweak is limited only to general forms and approximate 
gray-scale values, it is not necessary to present it with high-resolution ideal images - 
the extra detail would be wasted.  

3.8   Image Comparison 

To illustrate how the comparison scheme works, consider the ideal image in Figure 8 
of a black disk against a white background.  

 
Fig. 8. Five examples showing images compared to an ideal image (black disk).   
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Compare each image to the right of the black disks in examples (a) through (e). In 
example (a), every pixel value is as different as possible (covering the complete range 
of pixel difference: 255), and so the resulting fitness is 0. In example (b), half of the 
pixel values are identical, and the other half are as different as possible, and so fitness 
is 0.5. In example (c), the image is filled entirely with gray value 128 (mid-range 
between black and white). In this case, fitness is 0.5, since the difference between a 
gray pixel and either black or white is 128. In example (d), all pixels are identical, and 
so fitness is 1.0. Example (e) shows a Mandeltweak that resulted from evolution in a 
population using the black disk as the fitness function. It was able to approach the 
ideal, reaching a fitness value of 0.8517.  
 Let us define p (0<=p <=255) as the difference in value of a pixel in the Mandelt-
weak image and its corresponding pixel in the ideal image. The fitness f of a Man-
deltweak image is 
 
f = 1-P/r2   (0 <= f <= 1) 
 
where P is the sum of all normalized pixel differences: |p|/g. 
 This technique uses a simple pixel-wise comparison. A few variations have been 
explored in order to encourage sensitivity to certain features. But nothing conclusive 
has come of this. There is certainly a lot of research, and many techniques, for fea-
ture-based image comparison, and it would make for an interesting enhancement to 
this technique. But for the preliminary purposes of these experiments, this simple 
scheme is sufficient. 

4   Experiments 

To help visualize the evolution of a population of Mandeltweaks, each individual's 
genotype is plotted as a row of rectangles. The gray value of a rectangle corresponds 
to the value of its associated gene, with the range 0-1 mapped to a gray scale from 
black to white. An example is illustrated in  Figure 9. 

 
Fig. 9. visualization of a genotype with gene values mapped to grayscale.   

 
This genotype visualization in used in figure 10, which shows a population of 1000 
Mandeltweak genotypes evolving to imitate an ideal image of the author's face (upper 
left). Four stages of the evolution are plotted, at times 0, 1000, 10,000, and 50,000. 
Fitness is visualized as the vertical height of the genotype, and convergence is re-
vealed as similarity in genotype coloration. The Mandeltweak with the highest fitness 
in the population is shown at the top of each plot, and its fitness value is shown at the 
left of the plot. The final Mandeltweak is shown at right. 
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Fig. 10. plotting fitness and genetic convergence in a population of 1000 genotypes 
 
At initialization genotypes are randomized and their associated images are compared 
to the ideal image to determine fitness. In this particular experiment, the fitness values 
range from just under 0.5 to 0.827 at initialization. This distribution of fitness values 
is due to the three following factors: (1) the characteristics of the genotype-to-
phenotype mapping, and thus the resulting Mandeltweak images, (2) the ideal image, 
and (3) the nature of the fitness comparison scheme.  
 The graph shows that after 1000 iterations the lower end of the fitness range has 
raised. This is because the least-fit genotype is always replaced with the newly-
created genotype for each step, and since each new genotype is the product of two 
relatively-fit genotypes, it usually has higher fitness. This is especially the case in the 
beginning. 
 The highest fitness is shown at each stage, along with a small image of the Man-
deltweak with the highest fitness. By time 50,000 we see that the highest fitness is 
0.915. The highest fit Mandeltweak is shown at lower-right. Notice also that the geno-
types cover a much smaller range of fitness and that they have converged considera-
bly (revealing visible bands of similar colors across the population).  
 
Figure 11 shows the results of six experiments, each using a different ideal images as 
the fitness function.  
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(a) (b) (c) 
 

   
(d) (e) (f) 
  

Fig. 11. Six examples of ideal images and evolved Mandelweaks 
 
In these examples, the ideal images are shown to the left of their associated Mandelt-
weaks . The ideal images may appear jagged or pixelated because of their low resolu-
tion. The Mandeltweaks, in contrast, are shown at a higher resolution - recall that 
pixel resolution is arbitrary in Mandeltweaks, and that the encoding of the image is 
purely genetic/mathematical.  

In all of these experiments, population size was set to 1000, and mutation 
rate was set to 0.05 except for examples (a) and (c), in which population size was set 
to 100 and mutation rate was set to 0.1. In all cases, the highest fitness achieved was 
in the approximate range of 0.95. The number of iterations in each case ranged, aver-
aging around 2000. 
 
Range of Genetic Variation 
Each tweaker used in the math function has a range within which it can deviate from 
its default value. To manipulate this range, a global range scale s was created so that 
the whole array of range values could be scaled at once. In most experiments, s is set 
to 1 (resulting in the normal tweak ranges as originally designed). But s can be varied 
to explore Mandeltweak's imitative performance over different genetic ranges. Figure 
12 shows the results of 11 experiments with the ideal image set to a portrait of the 
20th century painter Francis Bacon. 
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Fig. 12. Varying tweak ranges in a series of experiments  

 
In each experiment, population size was set to 1000, and mutation rate was set to 
0.05. When the s is set to 0.0, the result is that when genotypes are mapped to pheno-
types, the values of the tweakers are clamped to their defaults. And so the image at 
the left-most side of Figure 12 is the Mandelbrot Set, at default angle and default 
coloration. As r is increased by increments of 0.2, we see that fitness increases on 
average, because there is an increasingly larger genetic space available for searching. 
The reason the default Mandelbrot image has a fitness of ~0.78 has to do with the 
nature of the ideal image, the nature of the default Mandeltweak settings, and the 
comparison technique. What is of interest, though, is not this value, but the rate at 
which fitness increases, and then reaches what appears to be a limit at around s=1.4 
(this is not absolutely confirmed, but all experiments indicate the same approximate 
limitation, including when they are run for many more iterations and with much larger 
populations).  
 Artistically-speaking, one might find the visual "sweet-spot" to occur before 
fitness has reached its maximum. In fact, the images in Figure 1 were intentionally 
evolved using a slightly smaller range. They also used smaller populations and were 
run for fewer iterations - this allowed the peculiar vestiges of Mandelbrot features to 
remain, making the head-like shapes more intriguing and ambiguous. 
 
Imitating...The Mandelbrot Set? 
Since the vast genetic space of all Mandeltweaks contains the Mandelbrot Set at the 
point in the space where all values are at their default settings, it is possible that an 
initial population of random Mandeltweaks can converge on the Mandelbrot Set. But 
in a number of experiments with different populations and mutation rates, this was not 
achieved. Instead, the population converged on another region of the space which 
approached the shape of the Set. Figure 13 shows the most fit Mandeltweak in a 
population in multiple stages of evolution, starting at time 0, then 2000, and then 
doubling the time intervals, up to 128000. It reached a maximum fitness of 0.895 The 
image at right is the Mandelbrot Set (a high-res version of the ideal image used) to 
show what it was trying to imitate. 



Published in: Design by Evolution, Natural Computing Series. ISBN 978-3-540-74109-1. Springer Berlin 
Heidelberg, 2008, p. 145 

 21 

 

 
Fig. 13. Mandeltweak imitates the Mandelbrot Set, only backwards 

 
In this and other similar experiments, the Mandeltweak got stuck on a local hill in the 
fitness landscape, which corresponds roughly to the shape, but it is rotated almost 180 
degrees! The fitness landscape is very large and rugged, and the shapes in the initial 
random population are too varied from the original shape - and so a common protru-
sion resulting from tweaking (such as the one shown in Figure 6), ends up being a 
proxy for the main bulb. As a test, a critical gene, the "angle" gene (responsible for 
varying the rotation of the shape in the complex plane), was clamped to 0, and not 
allowed to vary. The population was then able to more easily converge on the Man-
delbrot Set. This is an indication that the angle gene enlarges the fitness landscape 
considerably. 
 
Using Higher-Order Mandelbrot Functions 
The shape created by the higher-order function, z = z3+c, is shown in Figure 4. This 
uses more variables in the software implementation, to which tweakers can be at-
tached, and so it was considered as another base function to explore. It can be ex-
pressed as follows: replace the kernel of the expanded Mandelbrot function shown 
above: 
 
z1 = y + zy*zx + zx*zy 
z2 = x + zx*zx - zy*zy 

 
with:  
 
a = zx 
b = zy 
z2 = a*zx - b*zy 
z1 = b*zx + a*zy 
zx = z2 
zy = z1 
z2 = a*zx - b*zy 
z1 = b*zx + a*zy 
z1 = z1 + x 
z2 = z2 + y 
zx = z2 
zy = z1 
 

and tweak like this: 
 
a = zx 
b = zy 
z2 = ((a*p1 )+p2 )*((zx*p3 )+p4 )-((b*p5 )+p6 )*((zy*p7 )+p8 ) 
z1 = ((b*p9 )+p10)*((zx*p11)+p12)+((a*p13)+p14)*((zy*p15)+p16) 
zx = z2 
zy = z1 
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z2 = ((a*p17)+p18)*((zx*p19)+p20)-((b*p21)+p22)*((zy*p23)+p24) 
z1 = ((b*p25)+p26)*((zx*p27)+p28)+((a*p29)+p30)*((zy*p31)+p32) 
z1 = z1 + x 
z2 = z2 + y 
zx = z2 
zy = z1 
 

Figure 14 shows the results of five experiments in which the normal Mandeltweak 
algorithm is compared to the one which uses the cubed algorithm just described. 
Population was set to 1000, and mutation rate was set to 0.05. Each experiment was 
run until the population converged significantly, and the number of iterations, while 
varying among pairs of tests, was kept constant for each algorithm in the pair.  
 

 
Fig. 14. Comparing normal vs. cubed algorithm 

 
The cubed algorithm doesn't appear to be much better at imitating the ideal image, 
and it might even be inferior, if the stars placed next to the fitness values in the figure 
are any indication. In the case of both algorithms, there is an inability to imitate local 
features - notice that the fingers of the hand and the legs of the horse are not picked 
up very well using either algorithm. The reasons for this are not clear. A few possi-
bilities are: (1) the image comparison scheme is not feature-based, (2) the population 
is too small, (3) the genetic algorithm is not designed appropriately, or (4) these 
mathematical equations are simply not able to conjure up these particular shapes, even 
though the genetic space is very large.  
 There is more exploration to be done with higher-order Mandelbrot functions, as 
well as the other varieties of fractal equations, so as to increase the image-making 
vocabulary of genetic art based on iteration in the complex plane. 
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5   Conclusion 

The Mandeltweak images shown that are based on images of the author's head may be 
considered self-portraits. But in truth, the entire technique is a self-portrait. A strong 
background in art as a child, plus failing grades in high school math, set the stage for 
a naive and reckless approach to mathematics (when it was necessary to encounter 
math - as was the case when first programming the Mandelbrot Set). But while math 
understanding played a small role in these early tweaking experiments, it gradually 
became familiar, and now, complex mathematics is a favorite topic. Nonetheless, the 
Mandeltweak technique maintains its irreverent and subversive manipulation of com-
plex plane fractals, because the phenotype space is considerably expressive, and the 
visual vocabulary is large, and is likely to grow larger as more variations are ex-
plored.   
 Math-based computer art created using evolutionary computation is often non-
objective or abstract - not meant to represent anything in particular. The Mandelbrot 
Set and its kin are neither art, nor are they abstract art, in the sense of being hand-
crafted by a human. But the curious animal-like nature of the Mandelbrot Set, as far 
as how it behaves upon being tweaked, invites one to read it as an organic entity – and 
thus it enters into an interpretive space. This was part of the initial motivation behind 
the technique described. Its ability to imitate explicit images is limited. But this ten-
sion - the tension between being the platonic Mandelbrot Set and being coerced into a 
representational form - is part of the game. It is a kind of conceptual art. The question 
of how evolvable an image-making scheme can be is a common problem in evolu-
tionary art: is the phenotype space large enough? - and can a subset of it map to the 
artist's aesthetic space? The Mandeltweak technique was created to take on this ques-
tion. In the process of asking these questions, and to better understand its limits, the 
artist's aesthetic – and mathematical – vocabularies have grown larger. 
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